Réseau de Kolmogorov–Arnold


Définition

Un réseau de Kolmogorov-Arnold ou réseau KA est un réseau de neurones profond entraîné en apprenant une fonction d'activation pour chaque arête ou poids d'un réseau de neurones, plutôt qu'une seule fonction d'activation fixe en sortie du neurone comme dans un perceptron multicouche.

Les réseaux KA offriraient l'avantage d'une meilleure interprétabilité et d'une plus grande précision.

Compléments

En mai 2024, les chercheurs du MIT, de Caltech, de Northeastern et l'Institut de la NSF Institute for AI and Fundamental Interactions ont développé le réseau Kolmogorov-Arnold comme alternative au perceptron multicouche. Contrairement à ce dernier, dont les fonctions d'activation en sortie de chaque neurone sont fixes, les réseaux KA utilisent des fonctions d'activation apprises (polynômes) sur les arêtes (entrées du neurone), en remplaçant les poids linéaires par des splines paramétrées. L'emploi de splines pour approximer une fonction par apprentissage constitue une application pratique du théorème de représentation de Kolmogorov-Arnold. Rappelons qu'une spline est une fonction définie par morceaux par des polynômes.


Malgré que les réseaux KA demandent d'avantage de calcul, ils offrent l'avantage d'une meilleure interprétabilité et d'une plus grande précision. Advenant qu'on arrive à optimiser les calculs nécessaires, les réseaux RK pourraient remplacer les perceptrons mulicouches qui sont à la base de des architectures de réseaux de neurones profonds.

Français

réseau de Kolmogorov–Arnold

réseau KA

RKA (prononcé R-K)

Anglais

Kolmogorov–Arnold network

KAN

DeepKAN

Deep-KAN

Español

red Kolmogorov-Arnold

Una red Kolmogorov-Arnold o KA es una red neuronal profunda entrenada mediante el aprendizaje de una función de activación para cada borde o peso de una red neuronal, en lugar de una única función de activación fija a la salida de la neurona como en un perceptrón multicapa. Las redes KA ofrecerían la ventaja de una mayor interpretabilidad y precisión.

Sources